题目内容
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 | 保留 | 不支持 | |
岁以下 | |||
岁以上(含岁) |
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求至少有一人年龄在岁以下的概率.
(3)在接受调查的人中,有人给这项活动打出的分数如下: , , , , , , , , , ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.
【答案】(1);(2);(3).
【解析】试题分析:(1)由比上总人数等于30人比上持“不支持”态度的人数即可得解;
(2)列树状图,用古典概型计算即可;
(3)先计算平均数,再列举出与总体平均数之差的绝对值超过事件按,作比即可得解.
试题解析:
(1)参与调查的总人数为,其中从持“不支持”态度的人数中抽取了人,所以.
(2)易得,抽取的人中, 岁以下与岁以上人数分别为人(记为, ),人(记为, , ),从这人中任意选取人,基本事件为:
其中,至少有人年龄在岁以下的事件有个,所求概率为.
(3)总体的平均数为 ,
那么与总体平均数之差的绝对值超过的数有, , ,所以任取个数与总体平均数之差的绝对值超过的概率为.
【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.
(1) 依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01)(若,则线性相关程度很高,可用线性回归模型拟合)
(2) 蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:
周光照量(单位:小时) | |||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?
附:相关系数,参考数据:,,,