题目内容
【题目】(2018·长沙二模)在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则.推广到空间可以得到类似结论:已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则=________.
【答案】
【解析】由平面图形类比空间图形,由二维类比三维,如图,设正四面体P-ABC的棱长为a,E为等边三角形ABC的中心,O为内切球与外接球的球心,则AE=a,PE=a.设OA=R,OE=r,则r=a-R,又在Rt△AOE中,OA2=OE2+AE2,即R2=2+2,∴R=a,r=a,∴正四面体的外接球和内切球的半径之比是31,故正四面体P-ABC的内切球体积V1与外接球体积V2之比等于127,即=.
练习册系列答案
相关题目