题目内容
【题目】已知函数f(x)=ex+be﹣x , (b∈R),函数g(x)=2asinx,(a∈R).
(1)求函数f(x)的单调区间;
(2)若b=﹣1,f(x)>g(x),x∈(0,π),求a取值范围.
【答案】
(1)
解:
①当b≤0时,f'(x)≥0,所以f(x)的增区间为(﹣∞,+∞);
②当b>0时,减区间为 ,增区间为
(2)
解:由题意得ex﹣e﹣x﹣2asinx>0,x∈(0,π)恒成立,
构造函数h(x)=ex﹣e﹣x﹣2asinx,x∈(0,π)
显然a≤0时,ex﹣e﹣x﹣2asinx>0,x∈(0,π)恒成立,
下面考虑a>0时的情况:h(0)=0,h′(x)=ex+e﹣x﹣2acosx,h′(0)=2﹣2a,
当0<a≤1时,h′(x)≥0,所以h(x)=ex﹣e﹣x﹣2asinx在(0,π)为增函数,
所以h(x)>h(0)=0,即0<a≤1满足题意;
当a>1时,h′(0)=2﹣2a<0,又 ,
所以一定存在 ,h′(x0)=0,且h′(x)<0,x∈(0,x0),
所以h(x)在(0,x0)单调递减,所以h(x)<h(0)=0,
x∈(0,x0),不满足题意.
综上,a取值范围为(﹣∞,1]
【解析】(1)求出函数的导数,通过讨论b的范围,求出函数的单调区间即可;(2)构造函数h(x)=ex﹣e﹣x﹣2asinx,x∈(0,π),通过讨论a的范围确定函数的单调性,从而求出a的范围.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.
【题目】已知动点M(x,y)到直线ι:x=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求点A的坐标.
【题目】某地区2008年至2014年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y关于的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2008年至2014年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2016年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.