题目内容
等差数列{an}中,a3+a7-a10=8,a11-a4=4.记Sn=a1+a2+…+an,则S13等于______.
解法1:∵{an}为等差数列,设首项为a1,公差为d,
∴a3+a7-a10=a1+2d+a1+6d-a1-9d=a1-d=8①;a11-a4=a1+10d-a1-3d=7d=4②,
联立①②,解得a1=
,d=
;
∴s13=13a1+
d=156.
解法2:∵a3+a7-a10=8①,a11-a4=4②,
①+②可得a3+a7-a10+a11-a4=12,
∵根据等差数列的性质a3+a11=a10+a4,
∴a7=12,
∴s13=
×13=13a7=13×12=156.
故答案为156.
∴a3+a7-a10=a1+2d+a1+6d-a1-9d=a1-d=8①;a11-a4=a1+10d-a1-3d=7d=4②,
联立①②,解得a1=
60 |
7 |
4 |
7 |
∴s13=13a1+
13×12 |
2 |
解法2:∵a3+a7-a10=8①,a11-a4=4②,
①+②可得a3+a7-a10+a11-a4=12,
∵根据等差数列的性质a3+a11=a10+a4,
∴a7=12,
∴s13=
a1+a13 |
2 |
故答案为156.
练习册系列答案
相关题目