题目内容
设椭圆C:
=1(a>b>0)的离心率e=
,右焦点到直线
=1的距离d=
,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明,点O到直线AB的距离为定值,并求弦AB长度的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417577717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417608338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417623602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417639466.png)
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明,点O到直线AB的距离为定值,并求弦AB长度的最小值.
(1)
=1(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417670534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417655669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417670534.png)
(1)由e=
得
=
,即a=2c,∴b=
c.
由右焦点到直线
=1的距离为d=
,
=1化为一般式:bx+ay-ab=0得
=
,解得a=2,b=
.
所以椭圆C的方程为
=1.
(2)设A(x1,y1),B(x2,y2),当直线AB斜率存在时,设直线AB的方程为y=kx+m.与椭圆
=1联立消去y,得(4k2+3)x2+8kmx+(4m2-12)=0.由根与系数的关系得x1+x2=-
,x1x2=
.
∵OA⊥OB,∴x1x2+y1y2=0,∴x1x2+(kx1+m)(kx2+m)=0,即(k2+1)x1x2+km(x1+x2)+m2=0,
∴(k2+1)
-
+m2=0.
整理得7m2=12(k2+1),所以O到直线AB的距离d=
=
=
(为定值).
当直线AB斜率不存在时,可求出直线AB方程为x=±
,则点O到直线AB的距离为
(定值)
∵OA⊥OB,∴OA2+OB2=AB2≥2OA·OB,当且仅当OA=OB时取“=”,由直角三角形面积公式得:
d·AB=OA·OB.
∵OA·OB≤
,∴d·AB≤
.
∴AB≥2d=
,故当OA=OB时,弦AB的长度取得最小值
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417608338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417701352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417608338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417733344.png)
由右焦点到直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417623602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417639466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417623602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417811740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417639466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417733344.png)
所以椭圆C的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417655669.png)
(2)设A(x1,y1),B(x2,y2),当直线AB斜率存在时,设直线AB的方程为y=kx+m.与椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417655669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417873770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417889823.png)
∵OA⊥OB,∴x1x2+y1y2=0,∴x1x2+(kx1+m)(kx2+m)=0,即(k2+1)x1x2+km(x1+x2)+m2=0,
∴(k2+1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417889823.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417920811.png)
整理得7m2=12(k2+1),所以O到直线AB的距离d=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417920633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417935498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417951506.png)
当直线AB斜率不存在时,可求出直线AB方程为x=±
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417951506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417951506.png)
∵OA⊥OB,∴OA2+OB2=AB2≥2OA·OB,当且仅当OA=OB时取“=”,由直角三角形面积公式得:
d·AB=OA·OB.
∵OA·OB≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417998570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417998570.png)
∴AB≥2d=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417670534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034417670534.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目