题目内容

11.用反证法证明:若实数a,b,c,d满足a+b=c+d=1,ac+bd>1,那么a,b,c,d中至少有一个小于0,下列假设正确的是(  )
A.假设a,b,c,d都大于0B.假设a,b,c,d都是非负数
C.假设a,b,c,d中至多有一个小于0D.假设a,b,c,d中至多有两个大于0

分析 考虑命题的反面,即可得出结论.

解答 解:由于命题:“若a,b,c,d中至少有一个小于0”的反面是:“a,b,c,d都是非负数”,
故用反证法证明若实数a,b,c,d满足a+b=c+d=1,ac+bd>1,那么a,b,c,d中至少有一个小于0,假设应为“a,b,c,d都是非负数”,
故选:B.

点评 此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网