题目内容

11.已知变量x,y满足:$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=($\sqrt{2}$)2x+y的最大值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

分析 作出不等式组对应的平面区域,设m=2x+y,利用线性规划的知识求出m的最大值即可求出z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
设m=2x+y得y=-2x+m,
平移直线y=-2x+m,
由图象可知当直线y=-2x+m经过点A时,直线y=-2x+m的截距最大,
此时m最大.
由$\left\{\begin{array}{l}{2x-y=0}\\{x-2y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
代入目标函数m=2x+y得z=2×1+2=4.
即目标函数z=($\sqrt{2}$)2x+y的最大值为z=($\sqrt{2}$)4=4.
故选:D.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,数形结合的数学思想是解决此类问题的基本思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网