题目内容
已知实数x、y满足方程x2+y2-4x+1=0.求
(1)的最大值和最小值;(2)y-x的最小值;(3)x2+y2的最大值和最小值.
(1)的最大值和最小值;(2)y-x的最小值;(3)x2+y2的最大值和最小值.
(1)kmax=,kmin=-. (2)(y-x)min=-2-.
(3)2-
(3)2-
(1)如图,方程x2+y2-4x+1=0表示以点(2,0)为圆心,以为半径的圆.
设=k,即y=kx,由圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.由=,解得k2=3.所以kmax=,kmin=-.
(也可由平面几何知识,有OC=2,OP=,∠POC=60°,直线OP的倾斜角为60°,直线OP′的倾斜角为120°解之)
(2)设y-x=b,则y=x+b,仅当直线y=x+b与圆切于第四象限时,纵轴截距b取最小值.由点到直线的距离公式,得
=,即b=-2±,故(y-x)min=-2-.
(3)x2+y2是圆上点与原点距离之平方,故连结OC,与圆交于B点,并延长交圆于C′,则(x2+y2)max=|OC′|=2+,(x2+y2)min=|OB|=2-.
设=k,即y=kx,由圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.由=,解得k2=3.所以kmax=,kmin=-.
(也可由平面几何知识,有OC=2,OP=,∠POC=60°,直线OP的倾斜角为60°,直线OP′的倾斜角为120°解之)
(2)设y-x=b,则y=x+b,仅当直线y=x+b与圆切于第四象限时,纵轴截距b取最小值.由点到直线的距离公式,得
=,即b=-2±,故(y-x)min=-2-.
(3)x2+y2是圆上点与原点距离之平方,故连结OC,与圆交于B点,并延长交圆于C′,则(x2+y2)max=|OC′|=2+,(x2+y2)min=|OB|=2-.
练习册系列答案
相关题目