题目内容

已知实数xy满足方程x2+y2-4x+1=0.求
(1)的最大值和最小值;(2)yx的最小值;(3)x2+y2的最大值和最小值.
(1)kmax=kmin=-.   (2)(yxmin=-2-.
(3)2-
(1)如图,方程x2+y2-4x+1=0表示以点(2,0)为圆心,以为半径的圆.

=k,即y=kx,由圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.由=,解得k2=3.所以kmax=kmin=-.
(也可由平面几何知识,有OC=2,OP=,∠POC=60°,直线OP的倾斜角为60°,直线OP′的倾斜角为120°解之)
(2)设yx=b,则y=x+b,仅当直线y=x+b与圆切于第四象限时,纵轴截距b取最小值.由点到直线的距离公式,得
=,即b=-2±,故(yxmin=-2-.
(3)x2+y2是圆上点与原点距离之平方,故连结OC,与圆交于B点,并延长交圆于C′,则(x2+y2max=|OC′|=2+,(x2+y2min=|OB|=2-.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网