题目内容
【题目】如图,在四棱锥中,底面为直角梯形,,,,,,点、分别为,的中点,且平面平面.
(1)求证:平面.
(2)若,求直线与平面所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1)首先可得,再面面垂直的性质可得平面,即可得到,再由,即可得到线面垂直;
(2)过点做平面的垂线,以为原点,分别以,,为,,轴建立空间直角坐标系,利用空间向量法求出线面角;
解:(1)∵,点为的中点,∴,又∵平面平面,平面平面,平面,
∴平面,又平面,∴,
又∵,分别为,的中点,
∴,∴,
又平面,平面,,
∴平面.
(2)过点做平面的垂线,以为原点,分别以,,为,,轴建立空间直角坐标系,∵,∴,,
,,
∴,,,
设平面的法向量为,
由,得,令,得,
∴,
∴直线与平面所成角的正弦值为.
练习册系列答案
相关题目
【题目】为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.
(1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |