题目内容
【题目】奇函数f(x)在R上存在导数,当x<0时,f(x),则使得(x2﹣1)f(x)<0成立的x的取值范围为( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
【答案】C
【解析】
根据当x<0时,f(x)的结构特征,构造函数,求导得,由当x<0时,f(x),得在上是减函数,再根据f(x)奇函数,则也是奇函数,在上也是减函数,又因为函数f(x)在R上存在导数,
所以函数f(x)是连续的,所以函数h(x)在R上是减函数,并且与同号,将(x2﹣1)f(x)<0转化为求解.
设,
所以,
因为当x<0时,f(x),
即,
所以,
所以在上是减函数.
又因为f(x)奇函数,
所以也是奇函数,
所以在上也是减函数,
又因为函数f(x)在R上存在导数,
所以函数f(x)是连续的,
所以函数h(x)在R上是减函数,并且与同号,
所以(x2﹣1)f(x)<0或
解得或
故选:C
【题目】某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为.
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:
否定 | 肯定 | 总计 | |
男生 | 10 | ||
女生 | 30 | ||
总计 |
①完成列联表;
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |