题目内容
【题目】已知椭圆
与抛物线
有共同的焦点,且离心率为
,设
分别是
为椭圆的上下顶点
(1)求椭圆
的方程;
(2)过点
与
轴不垂直的直线
与椭圆
交于不同的两点
,当弦
的中点
落在四边形
内(含边界)时,求直线
的斜率的取值范围.
【答案】(1)
(2)
或![]()
【解析】
(1)由已知条件得到方程组,解得即可;
(2)由题意得直线的斜率存在,设直线方程为
,联立直线与椭圆方程,消元、列出韦达定理,由
得到
的范围,设弦
中点坐标为
则
,所以
在
轴上方,只需位于
内(含边界)就可以,即满足
,得到不等式组,解得即可;
解:(1)由已知椭圆右焦点坐标为
,离心率为
,
,
,
所以椭圆的标准方程为
;
(2)由题意得直线的斜率存在,设直线方程为
联立
,消元整理得
,
,
由
,解得![]()
设弦
中点坐标为![]()
,
所以
在
轴上方,只需位于
内(含边界)就可以,
即满足
,即
,
解得
或![]()
【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
数学成绩 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成绩 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为
,求
的分布列和数学期望;
②根据上表数据,求物理成绩
关于数学成绩
的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程
,
其中
,
.
|
|
|
|
76 | 83 | 812 | 526 |
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在
内,则为合格品,否则为不合格品.现统计得到相关统计情况如下:
甲套设备的样本的频率分布直方图
![]()
乙套设备的样本的频数分布表
质量指标值 |
|
|
|
|
|
|
频数 | 1 | 6 | 19 | 18 | 5 | 1 |
(1)根据上述所得统计数据,计算产品合格率,并对两套设备的优劣进行比较;
(2)填写下面列联表,并根据列联表判断是否有95%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:
| 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:
,其中![]()