题目内容
【题目】已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线?
(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.
【答案】(1),抛物线;(2)存在,.
【解析】
(1)设,易得,化简即得;
(2)利用导数几何意义可得,要使,只需.
联立直线m与抛物线方程,利用根与系数的关系即可解决.
(1)设,由题意,得,化简得,
所以动圆圆心Q的轨迹方程为,
它是以F为焦点,以直线l为准线的抛物线.
(2)不妨设.
因为,所以,
从而直线PA的斜率为,解得,即,
又,所以轴.
要使,只需.
设直线m的方程为,代入并整理,
得.
首先,,解得或.
其次,设,,
则,.
.
故存在直线m,使得,
此时直线m的斜率的取值范围为.
练习册系列答案
相关题目