题目内容
已知函数
,设曲线
在点
处的切线与
轴的交点为
,其中
为正实数.
(1)用
表示
;
(2)
,若
,试证明数列
为等比数列,并求数列
的通项公式;
(3)若数列
的前
项和
,记数列
的前
项和
,求
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214811625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214826600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214842598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214858266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214873608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214889300.png)
(1)用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214904344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214920388.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214951412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214982734.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214998481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214998481.png)
(3)若数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215029491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215045297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215060805.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215076568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215045297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215107373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215107373.png)
(1)
;(2)证明见解析,
;(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215138711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215154685.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215185951.png)
试题分析:(1)直接利用导数得出切线斜率,写出点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214842598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215216391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215232275.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214920388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214998481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215279400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215294348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214904344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215310822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214920388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215341610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214904344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215294348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215029491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215404574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215419435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215435323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215450343.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215029491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215076568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215497277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215513839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214998481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215528310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215544947.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215560848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215575516.png)
试题解析:(1)由题可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215591640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215606725.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215622969.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215638976.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215216391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215653970.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215669654.png)
由题意得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215684461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215138711.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215138711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240312157312022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240312158561336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215872524.png)
所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031214998481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240312158871210.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215903357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215918507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215419435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240312159501207.png)
所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215029491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215996473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031216106625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031216137895.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240312161521281.png)
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031216168327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240312161991194.png)
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031216199165.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240312162151165.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031215185951.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目