题目内容
【题目】如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.
(1)证明:面面;
(2)当为中点时,求二面角余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)要证明面面,只需证明面即可;
(2)以为坐标原点,以,,分别为,,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.
证明:(1)因为底面为正方形,所以
又因为,,满足,
所以
又,面,面,
,
所以面.
又因为面,所以,面面.
(2)由(1)知,,两两垂直,以为坐标原点,以,,分别为,,轴建系如图所示,
则,,,,则,.
所以,,,,
设面法向量为,则由得,
令得,,即;
同理,设面的法向量为,
则由得,
令得,,即,
所以,
设二面角的大小为,则
所以二面角余弦值为.
练习册系列答案
相关题目