题目内容
【题目】如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)证明:平面ADE⊥平面ACD;
(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)由BC⊥AC,BC⊥CD得BC⊥平面ACD,证明四边形DCBE是平行四边形得DE∥BC,故而DE平面ACD,从而得证面面垂直;
(2)建立空间坐标系,求出两半平面的法向量,计算法向量的夹角得出二面角的大小.
(1)证明:∵AB是圆O的直径,∴AC⊥BC,
∵DC⊥平面ABC,BC平面ABC,
∴DC⊥BC,又DC∩AC=C,
∴BC⊥平面ACD,
∵DC∥EB,DC=EB,
∴四边形DCBE是平行四边形,∴DE∥BC,
∴DE⊥平面ACD,
又DE平面ADE,
∴平面ACD⊥平面ADE.
(2)当C点为半圆的中点时,AC=BC=2,
以C为原点,以CA,CB,CD为坐标轴建立空间坐标系如图所示:
则D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),
∴(﹣2,2,0),(0,0,1),(0,2,0),(2,0,﹣1),
设平面DAE的法向量为(x1,y1,z1),平面ABE的法向量为(x2,y2,z2),
则,,即,,
令x1=1得(1,0,2),令x2=1得(1,1,0).
∴cos.
∵二面角D﹣AE﹣B是钝二面角,
∴二面角D﹣AE﹣B的余弦值为.
【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员人,其中岁及以上的共有人.这人中确诊的有名,其中岁以下的人占.
确诊患新冠肺炎 | 未确诊患新冠肺炎 | 合计 | |
50岁及以上 | 40 | ||
50岁以下 | |||
合计 | 10 | 100 |
(1)试估计岁及以上的返乡人员感染新型冠状病毒引起的肺炎的概率;
(2)请将下面的列联表补充完整,并判断是否有%的把握认为是否确诊患新冠肺炎与年龄有关;
参考表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
空调类 | 冰箱类 | 小家电类 | 其它类 | |
营业收入占比 | 90.10% | 4.98% | 3.82% | 1.10% |
净利润占比 | 95.80% | 3.82% | 0.86% |
则下列判断中不正确的是( )
A.该公司2018年度冰箱类电器销售亏损
B.该公司2018年度小家电类电器营业收入和净利润相同
C.该公司2018年度净利润主要由空调类电器销售提供
D.剔除冰箱类销售数据后,该公司2018年度空调类电器销售净利润占比将会降低
【题目】如表是我国某城市在2017年1月份至10月份个月最低温与最高温()的数据一览表.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最高温 | 5 | 9 | 9 | 11 | 17 | 24 | 27 | 30 | 31 | 21 |
最低温 |
已知该城市的各月最低温与最高温具有相关关系,根据这一览表,则下列结论错误的是( )
A.最低温与最高位为正相关
B.每月最高温和最低温的平均值在前8个月逐月增加
C.月温差(最高温减最低温)的最大值出现在1月
D.1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大