题目内容
已知抛物线y2=4x上一点到焦点的距离为5,这点的坐标为______.
∵抛物线方程为y2=4x,
∴焦点为F(1,0),准线为l:x=-1
设所求点坐标为P(x,y)
作PQ⊥l于Q
根据抛物线定义可知P到准线的距离等于P、Q的距离
即x+1=5,解之得x=4,
代入抛物线方程求得y=±4
故点P坐标为:(4,±4)
故答案为:(4,4)或(4,-4).
∴焦点为F(1,0),准线为l:x=-1
设所求点坐标为P(x,y)
作PQ⊥l于Q
根据抛物线定义可知P到准线的距离等于P、Q的距离
即x+1=5,解之得x=4,
代入抛物线方程求得y=±4
故点P坐标为:(4,±4)
故答案为:(4,4)或(4,-4).
练习册系列答案
相关题目