题目内容
【题目】从某商场随机抽取了2000件商品,按商品价格(元)进行统计,所得频率分布直方图如图所示.记价格在,,对应的小矩形的面积分别为,且.
(1)按分层抽样从价格在,的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;
(2)在清明节期间,该商场制定了两种不同的促销方案:
方案一:全场商品打八折;
方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)
商品价格 | ||||||
优惠(元) | 30 | 50 | 140 | 160 | 280 | 320 |
【答案】(1);(2)方案一,原因见解析
【解析】
(1)根据频率和为1的性质,计算得出,再得出价格在,的频率,由分层抽样的性质得出和抽取的件数,得出件中抽两件的所有情况,从中得出符合题意的情况,由古典概型概率公式计算即可;
(2)由频率分布直方图得出各组的频率,分别计算出两种方案优惠的价钱的平均值,即可作出判断.
(1)根据频率和为1的性质知,
又,得到;
价格在的频率为,价格在的频率为;
按分层抽样的方法从价格在,的商品中抽取6件
则在上抽取4件,记为;在上抽取2件,记为;
现从中抽出2件,所有可能情况为:,共计15种;
其中符合题意的有,共8种;
因此抽到的两件商品价格差超过800元的概率为.
(2)对于方案一,优惠的价钱的平均值为:
元;
对于方案二,优惠的价钱的平均值为:
元;
因为,所以选择方案一更好.
【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
数量(单位:辆) | 37 | 104 | 147 | 196 | 216 |
(1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;
(2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:
(i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;
(ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)
参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:;.
【题目】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(2)把评分不低于70分的用户称为“评分良好用户”,能否有的把握认为“评分良好用户”与性别有关?
参考附表:
参考公式,其中