题目内容

【题目】设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2 , 若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是

【答案】[ ,+∞)
【解析】解:当x≥0时,f(x)=x2∵函数是奇函数
∴当x<0时,f(x)=﹣x2
∴f(x)=
∴f(x)在R上是单调递增函数,
且满足2f(x)=f( x),
∵不等式f(x+t)≥2f(x)=f( x)在[t,t+2]恒成立,
∴x+t≥ x在[t,t+2]恒成立,
即:x≤(1+ )t在[t,t+2]恒成立,
∴t+2≤(1+ )t
解得:t≥
所以答案是:[ ,+∞).
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网