题目内容

20.已知$\overrightarrow{AB}⊥\overrightarrow{AC}$,|$\overrightarrow{AB}$|=$\frac{1}{t}$,|$\overrightarrow{AC}$|=t,若点P是△ABC所在平面内一点,且$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{4\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则$\overrightarrow{PB}•\overrightarrow{PC}$的最大值等于13.

分析 建立直角坐标系,由向量式的几何意义易得P的坐标,可化$\overrightarrow{PB}•\overrightarrow{PC}$ 为 17-($\frac{1}{t}$+4t),再利用基本不等式求得它的最大值.

解答 解:由题意建立如图所示的坐标系,
可得A(0,0),B($\frac{1}{t}$,0),C(0,t),
∵$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{4\overrightarrow{AC}}{|\overrightarrow{AC}|}$,∴P(1,4),
∴$\overrightarrow{PB}$=($\frac{1}{t}$-1,-4),$\overrightarrow{PC}$=(-1,t-4),
∴$\overrightarrow{PB}•\overrightarrow{PC}$=-($\frac{1}{t}$-1)-4(t-4)=17-($\frac{1}{t}$+4t)≤17-2$\sqrt{\frac{1}{t}•4t}$=13,
当且仅当$\frac{1}{t}$=4t,即t=$\frac{1}{2}$时,取等号,
∴$\overrightarrow{PB}•\overrightarrow{PC}$的最大值为13,
故答案为:13.

点评 本题考查平面向量数量积的运算,涉及基本不等式求最值,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网