题目内容
2.若自然数n使得n+(n+1)+(n+2)作竖式加法不产生进位现象,则称n为“良数”.例如32是“良数”,因为32+33+34 不产生进位现象;23 不是“良数”,因为23+24+25产生进位现象,那么小于1000的“良数”的个数为48.分析 本题是个新定义的题,由定义知,符合条件的良数有三个,一位数,二位数,三位数,且个数数字只能是0,1,2,非个位数字只能是0,1,2,3(首位不为0),分三类计数,选出正确选项.
解答 解:如果n是良数,则n的个位数字只能是0,1,2,非个位数字只能是0,1,2,3(首位不为0),
而小于1000的数至多三位,
一位的良数有0,1,2,共3个
二位的良数个位可取0,1,2,十位可取1,2,3,共有3×3=9个
三位的良数个位可取0,1,2,十位可取0,1,2,3,百位可取1,2,3,共有3×4×3=36个.
综上,小于1000的“良数”的个数为3+9+36=48个
故答案为:48.
点评 本题考查排列组合及简单计数问题,解题的关键是理解新定义,新定义型题,是近几年高考中出现频率较高的题,此类题的求解理解定义是入手的关键,考查理解能力.
练习册系列答案
相关题目
7.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(6-m)-f(m)-18+6m≥0,则实数m的取值范围为( )
A. | [-3,3] | B. | [3,+∞) | C. | [2,+∞) | D. | (-∞,-2]∪[2,+∞) |
11.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
12.下列不等式成立的是( )
A. | sin2<sin3 | B. | cos2<cos3 | C. | tan2<tan3 | D. | cot2<cot3 |