题目内容

已知二次函数的最小值为
⑴求函数的解析式;
⑵设,若上是减函数,求实数的取值范围;
⑶设函数,若此函数在定义域范围内不存在零点,求实数的取值范围.[
(1);(2);(3)

试题分析:(1)由可设,再由的最小值求a的值;(2)首先对
二次项系数分三种情况讨论,然后确定对称轴与给定区间
端点的关系;(3)要满足题意,须有有解,且无解.然后求
的最小值,令,但不属于的值域,即可得实数的取值范围。
⑴ 由题意设
的最小值为, ∴,且, ∴ 
 .
⑵ ∵
①当时,在[-1, 1]上是减函数,∴ 符合题意.
② 当时,对称轴方程为:
ⅰ)当,即 时,抛物线开口向上,
,  得  , ∴
ⅱ)当, 即时,抛物线开口向下,
,得 , ∴.
综上知,实数的取值范围为.
⑶法一:∵ 函数在定义域内不存在零点,必须且只须有
有解,且无解.
,且不属于的值域,
又∵
的最小值为的值域为
,且
的取值范围为.
法二:,令
必有,得
因为函数在定义域内不存在零点,
,即,又(否则函数定义域为空集,不是函数),
的取值范围是
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网