题目内容
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0<x1<x2<1 |
a |
(1)当x∈(0,x1)时,证明x<f (x)<x1;
(2)设函数f(x)的图象关于直线x=x0对称,证明x0<
x1 |
2 |
分析:(1)方程f(x)-x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差
x1-f(x),化简分析出f(x)<x1,即可.
(2).方程f(x)-x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<
;
x1-f(x),化简分析出f(x)<x1,即可.
(2).方程f(x)-x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<
x1 |
2 |
解答:证明:(1)令F(x)=f(x)-x.因为x1,x2是方程f(x)-x=0的根,所以
F(x)=a(x-x1)(x-x2).
当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,又a>0,得
F(x)=a(x-x1)(x-x2)>0,
即x<f(x).
x1-f(x)
=x1-[x+F(x)]
=x1-x+a(x1-x)(x-x2)
=(x1-x)[1+a(x-x2)]
因为0<x<x1<x2<
所以x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0.
得x1-f(x)>0.
由此得f(x)<x1.
(2)依题意知x0=-
因为x1,x2是方程f(x)-x=0的根,即x1,x2是方程ax2+(b-1)x+c=0的根.
∴x1+x2=-
,x0=-
=
=
因为ax2<1,所以x0<
=
.
F(x)=a(x-x1)(x-x2).
当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,又a>0,得
F(x)=a(x-x1)(x-x2)>0,
即x<f(x).
x1-f(x)
=x1-[x+F(x)]
=x1-x+a(x1-x)(x-x2)
=(x1-x)[1+a(x-x2)]
因为0<x<x1<x2<
1 |
a |
所以x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0.
得x1-f(x)>0.
由此得f(x)<x1.
(2)依题意知x0=-
b |
2a |
因为x1,x2是方程f(x)-x=0的根,即x1,x2是方程ax2+(b-1)x+c=0的根.
∴x1+x2=-
b-1 |
a |
b |
2a |
a(x1+x2)-1 |
2a |
ax1+ax2-1 |
2a |
因为ax2<1,所以x0<
ax1 |
2a |
x1 |
2 |
点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.
练习册系列答案
相关题目
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2<
,且函数f(x)的图象关于直线x=x0对称,则有( )
1 |
a |
A、x0≤
| ||
B、x0>
| ||
C、x0<
| ||
D、x0≥
|