题目内容

设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,求a2+b2的最小值.
分析:把等式看成关于a,b的直线方程:(x2-1)a+2xb+x-2=0,根据直线上一点(a,b)到原点的距离大于等于原点到直线的距离,得一不等式,对式子进行恰当变形后,利用函数的单调性可求得a2+b2的最小值.
解答:解:把等式看成关于a,b的直线方程:(x2-1)a+2xb+x-2=0,
由于直线上一点(a,b)到原点的距离大于等于原点到直线的距离,即
a2+b2
|x-2|
(x2-1)2+(2x)2

所以a2+b2≥(
x-2
1+x2
)2
=
1
(x-2+
5
x-2
+4)2
1
100

因为x-2+
5
x-2
在x∈[3,4]是减函数,上述式子在x=3,a=-
2
25
,b=-
3
50
时取等号,
故a2+b2的最小值为
1
100
点评:本题考查二次函数的性质、函数的单调性及不等式知识,考查学生灵活运用知识解决问题的能力,能力要求较高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网