题目内容
【题目】如图1,在边长为2的正方形
中,
是边
的中点.将
沿
折起使得平面
平面
,如图2,
是折叠后
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的平面角的余弦值.
【答案】(1)见解析(2)![]()
【解析】试题分析:(1)取
中点
,根据平行四边形性质可得
,再根据线面平行判定定理得
平面
;(2)求二面角,一般利用空间向量进行求解,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与向量夹角之间相等或互补关系求解.
试题解析:(Ⅰ) 证明:取
中点
,连结
,
∵
为
中点,∴
,
,
∴
,
∴四边形
是平行四边形
∴
,又
平面
,
平面
,
∴
平面![]()
(Ⅱ)如图示以
为坐标原点,
建立空间直角坐标系
则由已知得
,
, ![]()
设平面
的法向量为![]()
则
![]()
解得一个法向量为![]()
设平面
的法向量为![]()
则
![]()
解得一个法向量为![]()
∵
,
,
∴二面角
的平面角的余弦值
.
![]()
【题目】近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月
、
两种移动支付方式的使用情况,从全校学生中随机抽取了
人,发现样本中
、
两种支付方式都不使用的有
人,样本中仅使用
和仅使用
的学生的支付金额分布情况如下:
支付金额(元) 支付方式 |
|
| 大于 |
仅使用 |
|
|
|
仅使用 |
|
|
|
(1)从样本仅使用
和仅使用
的学生中各随机抽取
人,以
表示这
人中上个月支付金额大于
元的人数,求
的分布列和数学期望;
(2)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用
的学生中,随机抽查
人,发现他们本月的支付金额都大于
元.根据抽查结果,能否认为样本仅使用
的学生中本月支付金额大于
元的人数有变化?说明理由.
【题目】为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为
,且成绩分布在
的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中
构成以2为公比的等比数列.
![]()
(1)求
的值;
(2)填写下面
列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?
文科生 | 理科生 | 合计 | |
获奖 | 6 | ||
不获奖 | |||
合计 | 400 |
(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为
,求
的分布列及数学期望.
附:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |