ÌâÄ¿ÄÚÈÝ
16£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¶ÌÖáµÄÒ»¸ö¶Ëµãµ½ÓÒ½¹µãµÄ¾àÀëΪ2£®ÉèÖ±Ïßl£ºx=my+1£¨m¡Ù0£©ÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬µãA¹ØÓÚxÖá¶Ô³ÆµãΪA¡ä£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÒÔÏ߶ÎABΪֱ¾¶µÄÔ²¹ý×ø±êÔµãO£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÊÔÎÊ£ºµ±m±ä»¯Ê±£¬Ö±ÏßA¡äBÓëxÖáÊÇ·ñ½»ÓÚÒ»¸ö¶¨µã£¿ÈôÊÇ£¬Çëд³ö¶¨µãµÄ×ø±ê£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Í¨¹ý¶ÌÖáµÄÒ»¸ö¶Ëµãµ½ÓÒ½¹µãµÄ¾àÀëΪ2¿ÉÖªa=2£¬½ø¶øÀûÓÃÀëÐÄÂʵÄÖµ¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ýABÒÔÏ߶ÎABΪֱ¾¶µÄÔ²¹ý×ø±êÔµãO¿ÉÖª$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬Í¨¹ýÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì¡¢ÀûÓÃΤ´ï¶¨Àí»¯¼òx1x2+y1y2=0£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£»
£¨3£©Í¨¹ýÔÚÖ±ÏßA'BµÄ·½³Ì$\frac{{y+{y_1}}}{{{y_2}+{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$ÖÐÁîy=0£¬¼ÆËã¿ÉÖªx=4£¬¼´µ±m±ä»¯Ê±£¬Ö±ÏßA'BÓëxÖá½»ÓÚ¶¨µã£¨4£¬0£©£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ$\left\{\begin{array}{l}{{b}^{2}+{c}^{2}={2}^{2}}\\{e=\frac{c}{a}=\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}=\frac{\sqrt{3}}{2}}\end{array}\right.$£¬
½âµÃ£ºa=2£¬b=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£»
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥x¡¢ÕûÀíµÃ£º£¨m2+4£©y2+2my-3=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò$\left\{\begin{array}{l}{y_1}+{y_2}=-\frac{2m}{{{m^2}+4}}\\{y_1}{y_2}=-\frac{3}{{{m^2}+4}}\end{array}\right.$£¬
¡ßABÒÔÏ߶ÎABΪֱ¾¶µÄÔ²¹ý×ø±êÔµãO£¬
¡à$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬¼´x1x2+y1y2=0£¬
¡à$£¨m{y_1}+1£©£¨m{y_2}+1£©+{y_1}{y_2}=0£¬£¨{m^2}+1£©{y_1}{y_2}+m£¨{y_1}+{y_2}£©+1=0$£¬
¡à$£¨{m^2}+1£©£¨-\frac{3}{{{m^2}+4}}£©+m£¨-\frac{2m}{{{m^2}+4}}£©+1=0£¬\frac{{-4{m^2}+1}}{{{m^2}+4}}=0$£¬
¼´${m^2}=\frac{1}{4}$£¬½âµÃ£º$m=¡À\frac{1}{2}$£¬
¹ÊËùÇóÖ±ÏßlµÄ·½³ÌΪ$x=\frac{1}{2}y+1»òx=-\frac{1}{2}y+1$£»
£¨3£©½áÂÛ£ºµ±m±ä»¯Ê±£¬Ö±ÏßA'BÓëxÖá½»ÓÚ¶¨µã£¨4£¬0£©£®
ÀíÓÉÈçÏ£º
ÓÉ£¨2£©Öª£ºA'£¨x1£¬-y1£©ÔòÖ±ÏßA'BµÄ·½³ÌΪ$\frac{{y+{y_1}}}{{{y_2}+{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$£¬
Áîy=0£¬µÃx=$\frac{{x}_{2}-{x}_{1}}{{y}_{2}+{y}_{1}}$•y1+x1
=$\frac{£¨m{y}_{2}-m{y}_{1}£©{y}_{1}+£¨m{y}_{1}+1£©£¨{y}_{2}+{y}_{1}£©}{{y}_{2}+{y}_{1}}$
=$\frac{m{y}_{2}{y}_{1}-m{{y}_{1}}^{2}+m{y}_{2}{y}_{1}+m{{y}_{1}}^{2}+{y}_{1}+{y}_{2}}{{y}_{2}+{y}_{1}}$
=$\frac{2m{y}_{2}{y}_{1}}{{y}_{2}+{y}_{1}}$+1
=$\frac{2m•£¨-\frac{3}{{m}^{2}+4}£©}{-\frac{2m}{{m}^{2}+4}}$+1
=3+1
=4£¬
Õâ˵Ã÷£ºµ±m±ä»¯Ê±£¬Ö±ÏßA'BÓëxÖá½»ÓÚ¶¨µã£¨4£¬0£©£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮