题目内容
6.如果关于x的方程$\frac{x}{6}$-$\frac{6m-1}{3}$=x-$\frac{5m-1}{2}$的解不大于1,且m是一个正整数,求x的值.分析 解方程$\frac{x}{6}$-$\frac{6m-1}{3}$=x-$\frac{5m-1}{2}$得:x=$\frac{3m-1}{5}$,由方程$\frac{x}{6}$-$\frac{6m-1}{3}$=x-$\frac{5m-1}{2}$的解不大于1,且m是一个正整数,先求出m,进而可得x的值.
解答 解:∵$\frac{x}{6}$-$\frac{6m-1}{3}$=x-$\frac{5m-1}{2}$
去分母得:x-2(6m-1)=6x-3(5m-1),
去括号得:x-12m+2=6x-15m+3,
整理得:5x=3m-1,
故x=$\frac{3m-1}{5}$,
由$\frac{3m-1}{5}$≤1得:m≤2,
又∵m是一个正整数,
∴m=1,或m=2,
故x=$\frac{2}{5}$,或x=1
点评 本题考查的知识点是解方程,解不等式,是一元一次方程与一元一次不等式的综合应用,难度不大,属于基础题.
练习册系列答案
相关题目
14.设全集U=Z,集合M={1,2},P={-2,-1,0,1,2},则P∩CUM=( )
A. | {0} | B. | {1} | C. | {-1,-2,0} | D. | Φ |
11.下列结论正确的是( )
A. | 当$x∈(0,\frac{π}{2})$时,$sinx+\frac{1}{sinx}≥2$ | B. | 当x>0时,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$ | ||
C. | 当x≥2时,$x+\frac{1}{x}$的最小值为2 | D. | 当0<x≤2时,$x-\frac{1}{x}$无最大值 |
18.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列$\left\{{a_n}\right\}({n∈{N^*}})$的前12项(如表所示),按如此规律下去,则a2015+a2016+a2017=( )
a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 |
x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | x5 | y5 | x6 | y6 |
A. | 1007 | B. | 1008 | C. | 1009 | D. | 2017 |