题目内容
【题目】已知两条直线l1:y=m 和l2:y(m>0),直线l1与函数y=|log2x|的图象从左至右相交于点A,B,直线l2与函数y=|log2x|的图象从左至右相交于C,D.记线段AC和BD在X轴上的投影长度分别为a 和b.当m变化时,的最小值为()
A. B. C. D.
【答案】D
【解析】
由题意设A,B,C,D各点的横坐标分别为xA,xB,xC,xD,依题意可求得为xA,xB,xC,xD的值,a=|xA﹣xC|,b=|xB﹣xD|,下面利用基本不等式可求最小值.
解:设A,B,C,D各点的横坐标分别为xA,xB,xC,xD,
则﹣log2xA=m,log2xB=m;﹣log2xC,log2xD;
∴xA=2﹣m,xB=2m,xC,xD.
∴a=|xA﹣xC|,b=|xB﹣xD|,
∴2m
又m>0,∴m(2m+1)2,
当且仅当,即m时取“=”号,
∴8,
故选D.
练习册系列答案
相关题目
【题目】2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:
观看世界杯 | 不观看世界杯 | 总计 | |
男 | 40 | 20 | 60 |
女 | 15 | 25 | 40 |
总计 | 55 | 45 | 100 |
经计算的观测值.
附表:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,所得结论正确的是( )
A. 有以上的把握认为“该小区居民是否观看世界杯与性别有关”
B. 有以上的把握认为“该小区居民是否观看世界杯与性别无关”
C. 在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”
D. 在犯错误的概率不超过0.001的前提下,认为“该小区居民是否观看世界杯与性别无关”