题目内容
【题目】2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:
观看世界杯 | 不观看世界杯 | 总计 | |
男 | 40 | 20 | 60 |
女 | 15 | 25 | 40 |
总计 | 55 | 45 | 100 |
经计算的观测值.
附表:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,所得结论正确的是( )
A. 有以上的把握认为“该小区居民是否观看世界杯与性别有关”
B. 有以上的把握认为“该小区居民是否观看世界杯与性别无关”
C. 在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”
D. 在犯错误的概率不超过0.001的前提下,认为“该小区居民是否观看世界杯与性别无关”
【答案】C
【解析】分析:根据题目的条件中已经给出这组数据的观测值,把所给的观测值同节选的观测值表进行比较,发现它大于7.879,在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”.
详解:由题意算得, ,参照附表,可得
在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”.
故选:A.
【题目】某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
根据频率分布直方图填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关.
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:K2=.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |