题目内容
【题目】已知实数x1 , x2 , x3 , x4 , x5满足0<x1<x2<x3<x4<x5
(1)求证不等式x12+x22+x32+x42+x52>x1x2+x2x3+x3x4+x4x5+x5x1
(2)随机变量X取值
的概率均为
,随机变量Y取值
的概率也均为
,比较DX与DY大小关系.
【答案】
(1)证明:∵0<x1<x2<x3<x4<x5,
∴
+
>2x1x2,
+
>2x2x3,
+
>2x3x4,
+
>2x4x5,
+
>2x5x1,
∴2(
+
+
+
+
)>2x1x2+2x2x3+2x3x4+2x4x5+2x5x1,
∴x12+x22+x32+x42+x52>x1x2+x2x3+x3x4+x4x5+x5x1
(2)解:设
=
(x1+x2+…+x5).
EX=
+
+
+
=
(x1+x2+…+x5)=
.
EY=
+…+
=
(x1+x2+…+x5)=
.
DX=
+…+
,
DY=
+
+…+
,
又∵实数x1,x2,x3,x4,x5满足0<x1<x2<x3<x4<x5,
∴DX﹣DY=
+
+…+ ![]()
=
×
×[(x1﹣x2)(5x1+7x2)+(x2﹣x3)(5x2+7x3)+…+(x5﹣x1)(5x5+7x1)]
=
×(x1x2+x2x3+…+x5x1﹣
﹣…﹣ ![]()
=﹣
+…+
<0,
∴DX<DY
【解析】(1)0<x1<x2<x3<x4<x5,利用基本不等式的性质可得
+
>2x1x2,
+
>2x2x3,…,
+
>2x5x1,相加即可得出.(2)设
=
(x1+x2+…+x5).利用数学期望计算公式可得EX,EY.再利用方差计算公式可得DX,DY.作差即可比较出大小关系.