题目内容
1.在数列{an}中,a1=2,3(an-1)(an-1-1)+an-an-1=0(n≥2).(1)求数列{an}的通项公式;
(2)设数列bn=$\sqrt{{a}_{n}-1}$,{bn}的前n项和为Tn,求证:Tn>$\frac{2}{3}$($\sqrt{3n+1}$-1).
分析 (1)由3(an-1)(an-1-1)+an-an-1=0(n≥2),变形为3(an-1)(an-1-1)+(an-1)-(an-1-1)=0,化为$\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n-1}-1}$=3,利用等差数列的通项公式即可得出.
(2)由bn=$\sqrt{\frac{1}{3n-2}}$>$\frac{2}{\sqrt{3n+1}+\sqrt{3n-2}}$>$\frac{2}{3}$($\sqrt{3n+1}-\sqrt{3n-2}$),利用“裂项求和”与“放缩法”即可证明.
解答 (1)解:∵3(an-1)(an-1-1)+an-an-1=0(n≥2),
∴3(an-1)(an-1-1)+(an-1)-(an-1-1)=0,
化为$\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n-1}-1}$=3,
∴数列$\{\frac{1}{{a}_{n}-1}\}$是等差数列,首项为1,公差为3,
∴$\frac{1}{{a}_{n}-1}$=1+3(n-1)=3n-2,
∴an=$\frac{3n-1}{3n-2}$.
(2)证明:bn=$\sqrt{{a}_{n}-1}$=$\sqrt{\frac{1}{3n-2}}$>$\frac{2}{\sqrt{3n+1}+\sqrt{3n-2}}$>$\frac{2}{3}$($\sqrt{3n+1}-\sqrt{3n-2}$),
∴{bn}的前n项和为Tn=b1+b2+…+bn
>$\frac{2}{3}$$[(\sqrt{4}-\sqrt{1})+(\sqrt{7}-\sqrt{4})+…+(\sqrt{3n+1}-\sqrt{3n-2})]$
=$\frac{2}{3}$$(\sqrt{3n+1}-1)$.
∴Tn>$\frac{2}{3}$($\sqrt{3n+1}$-1).
点评 本题考查了等差数列的通项公式、“裂项求和”与“放缩法”,考查了变形能力、推理能力与计算能力,属于中档题.