题目内容
【题目】如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.
(1) 求证:平面平面;
(2) 求二面角的大小.
【答案】(1)详见解析;(2).
【解析】
试题(1) 利用直角三角形,先证明折前有,折后这个垂直关系没有改变,然后由平面平面的性质证明平面,最后由面面垂直的判定定理即可证明平面平面;(2)为方便计算,不妨设,先以为原点,以方向为轴,以方向为轴,以与平面向上的法向量同方向为轴,建立空间直角坐标系,写给相应点的坐标,然后分别求出平面和平面的一个法向量,接着计算出这两个法向量夹角的余弦值,根据二面角的图形与计算出的余弦值,确定二面角的大小即可.
试题解析:(1) 证明:由题可知:折前
,这个垂直关系,折后没有改变
故折后有
(2)不妨设,以为原点,以方向为轴,以方向为轴,以与平面向上的法向量同方向为轴,建立空间直角坐标系 7分
则
设平面和平面的法向量分别为,
由及可得到即,不妨取
又由及可得到即
不妨取9分
11分
综上所述,二面角大小为12分.
【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):
满意度 | 老年人 | 中年人 | 青年人 | |||
乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | |
10分(满意) | 12 | 1 | 20 | 2 | 20 | 1 |
5分(一般) | 2 | 3 | 6 | 2 | 4 | 9 |
0分(不满意) | 1 | 0 | 6 | 3 | 4 | 4 |
(1)在样本中任取个,求这个出行人恰好不是青年人的概率;
(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;
(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.