题目内容
【题目】已知函数,.
(1)求的值;
(2)令在上最小值为,证明:.
【答案】(1);(2)见解析.
【解析】
(1)将转化为对任意恒成立,令,故只需,即可求出的值;
(2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出.
函数的定义域为,因为对任意恒成立,
即对任意恒成立,
令,则,
当时,,故在上单调递增,
又,所以当时,,不符合题意;
当时,令得,
当时,;当时,,
所以在上单调递增,在上单调递减,
所以,
所以要使在时恒成立,则只需,即,
令,,
所以,
当时,;当时,,
所以在 单调递减,在上单调递增,所以,
即,又,所以,
故满足条件的的值只有
(2)由(1)知,所以,
令,则,
当,时,即在上单调递增;
又,,所以,使得,
当时,;当时,,
即在上单调递减,在上单调递增,且
所以,
即,所以,即.
练习册系列答案
相关题目
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、劳动能力情况.子女受教育情况、危旧房情况、患病情况等进行调查.并把调查结果转化为各户的贫困指标.将指标按照,,,,分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”;当时,认定该户为“亟待帮助户".已知此次调查中甲村的“绝对贫困户”占甲村贫困户的.
(1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与村落有关:
甲村 | 乙村 | 总计 | |
绝对贫困户 | |||
相对贫困户 | |||
总计 |
(2)某干部决定在这两村贫困指标处于的贫困户中,随机选取户进行帮扶,用表示所选户中“亟待帮助户”的户数,求的分布列和数学期望.
附:,其中.