题目内容
【题目】已知双曲线方程为.
(1)求该双曲线的实轴长、虚轴长、离心率;
(2)若抛物线的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线的方程.
【答案】(1)实轴长为2a=6、虚轴长2b=8、离心率;(2)y2=-12x.
【解析】试题分析:(1)将双曲线方程化为标准方程,求出,即可得到所求实轴长、虚轴长、离心率;
(2)求出双曲线的中心坐标和左顶点坐标,设抛物线C的方程为y2=-2px(p>0),由焦点坐标,可得p的方程,解方程即可得到所求.
试题解析:
(1)双曲线方程为16x2-9y2=144, 即为-=1, 可得a=3,b=4,c==5,
则双曲线的实轴长为2a=6、虚轴长2b=8、离心率e==;
(2)抛物线C的顶点是该双曲线的中心(0,0), 而焦点是其左顶点(-3,0),
设抛物线C的方程为y2=-2px(p>0), 由-=-3,解得p=6.
则抛物线C的方程为y2=-12x.
练习册系列答案
相关题目
【题目】孝感车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;
(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?
()