题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若A= ,b(1﹣cosC)=ccosA,b=2,则△ABC的面积为( )
A.
B.2
C.
D.或2

【答案】D
【解析】解:∵在△ABC中,b(1﹣cosC)=ccosA,可得:b=ccosA+bcosC,
∴sinB=sinCcosA+sinBcosC=sin(A+C)=sinAcosC+cosAsinC,可得:sinBcosC=sinAcosC,
∴cosC=0,或sinB=sinA,
∵A= ,b=2,
∴当cosC=0时,C= ,a= =2 ,SABC= ab= =2
当sinB=sinA时,可得A=B=C= ,a=b=c=2,SABC= absinC= =
故选:D.
【考点精析】掌握正弦定理的定义是解答本题的根本,需要知道正弦定理:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网