题目内容

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,并根据

(1)写出函数f(x)(x∈R)的增区间;
(2)写出函数f(x)(x∈R)的解析式;
(3)若函数g(x)=f(x)﹣2ax+2(x∈[1,2]),求函数g(x)的最小值.

【答案】
(1)解:如图,根据偶函数的图象关于y轴对称,可作出f(x)的图象,,

则f(x)的单调递增区间为(﹣1,0),(1,+∞)


(2)解:令x>0,则﹣x<0,∴f(﹣x)=x2﹣2x

∵函数f(x)是定义在R上的偶函数,

∴f(x)=f(﹣x)=x2﹣2x

∴解析式为f(x)=


(3)解:g(x)=x2﹣2x﹣2ax+2,对称轴为x=a+1,

当a+1≤1时,g(1)=1﹣2a为最小;

当1<a+1≤2时,g(a+1)=﹣a2﹣2a+1为最小;

当a+1>2时,g(2)=2﹣4a为最小;

∴g(x)=


【解析】(1)根据偶函数的图象关于y轴对称,可作出f(x)的图象,由图象可得f(x)的单调递增区间;(2)令x>0,则﹣x<0,根据条件可得f(﹣x)=x2﹣2x,利用函数f(x)是定义在R上的偶函数,可得f(x)=f(﹣x)=x2﹣2x,从而可得函数f(x)的解析式;(3)先求出抛物线对称轴x=a﹣1,然后分当a﹣1≤1时,当1<a﹣1≤2时,当a﹣1>2时三种情况,根据二次函数的增减性解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网