题目内容
【题目】已知定义在R上的函数 (m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )
A.a<b<c
B.b<a<c
C.c<a<b
D.a<c<b
【答案】B
【解析】解:∵f(x)为偶函数; ∴f(﹣x)=f(x);
∴ |﹣x﹣m|﹣1= |x﹣m|﹣1;
∴|﹣x﹣m|=|x﹣m|;
(﹣x﹣m)2=(x﹣m)2;
∴mx=0;
∴m=0;
∴f(x)= |x|﹣1;
∴f(x)在[0,+∞)上单调递减,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0);
∵0<log23<log25;
∴c>a>b.
故选:B.
【考点精析】本题主要考查了指数函数的单调性与特殊点的相关知识点,需要掌握0<a<1时:在定义域上是单调减函数;a>1时:在定义域上是单调增函数才能正确解答此题.
练习册系列答案
相关题目