题目内容
【题目】观察下列等式:
(sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此规律,
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= .
【答案】n(n+1)
【解析】解:观察下列等式:(sin )﹣2+(sin )﹣2= ×1×2;(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此规律(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= ×n(n+1),
故答案为: n(n+1)
由题意可以直接得到答案.;本题考查了归纳推理的问题,关键是找到相对应的规律,属于基础题.
练习册系列答案
相关题目