题目内容
【题目】某工厂要建造一个长方形无盖蓄水池,其容积为立方米,深为.如果池底每平方米的造价为元,池壁每平方米的造价为元,那么怎样设计水池能使总造价最低(设蓄水池池底的相邻两边边长分别为,)?最低总造价是多少?
【答案】将蓄水池的池底设计成边长为米的正方形时总造价最低,最低总造价是元.
【解析】
要建造一个长方形无盖蓄水池,其容积为立方米,深为,设蓄水池池底的相邻两边边长分别为,,可得,求出总造价为的表达式,根据均值不等式,即可求得答案.
要建造一个长方形无盖蓄水池,其容积为立方米,深为
设蓄水池池底的相邻两边边长分别为,,
由体积为可知:
,
设总造价为.
又,
,
,
当且仅当,时,上式成立,此时.
将蓄水池的池底设计成边长为40米的正方形时总造价最低,最低总造价是元.
【题目】每年的金秋十月,越野e族阿拉善英雄会在内蒙古自治区阿拉善盟阿左旗腾格里沙漠举行,该项目已打造成集沙漠竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年英雄会参会人数(万人)与沙漠中所需环保车辆数量(辆),得到如下统计表:
参会人数(万人) | 11 | 9 | 8 | 10 | 12 |
所需环保车辆(辆) | 28 | 23 | 20 | 25 | 29 |
(1)根据统计表所给5组数据,求出关于的线性回归方程.
(2)已知租用的环保车平均每辆的费用(元)与数量(辆)的关系为
.主办方根据实际参会人数为所需要投入使用的环保车,
每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次英雄会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少?(注:利润主办方支付费用租用车辆的费用).
参考公式: