题目内容

【题目】已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f(x)≥0,f(x)是增函数,则a=f(2010),b=f( ),c=﹣f( )的大小关系是(
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c

【答案】A
【解析】解答:∵y=f(x)是偶函数,而y=f(x+1)是奇函数,∴4为函数的一个周期,
又∵对任意0≤x≤1,都有f(x)≥0,
∴a=f(2010)=f(2)=﹣f(0)
b=f( )=﹣f( ),
c=﹣f(
∵0< <1
∴f( )>f( )>f(0)
∴b<c<a
故选A
分析:y=f(x)是偶函数,而y=f(x+1)是奇函数可推断出=f(x)是周期为4的函数,y=f(x)是偶函数,对任意0≤x≤1,都有f(x)≥0,f(x)是增函数,由这些性质将三数化简为自变量在0≤x≤1的函数值来表示,再利用单调性比较大小.
【考点精析】利用奇偶性与单调性的综合对题目进行判断即可得到答案,需要熟知奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网