题目内容
【题目】如图,已知椭圆C1: +y2=1,双曲线C2: ﹣ =1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为( )
A.9
B.5
C.
D.3
【答案】D
【解析】解:由已知,|OA|=a= ,
设OA所在渐近线的方程为y=kx(k>0),
∴A点坐标可表示为A(x0,kx0)(x0>0)
∴ = ,即A( , ),
∴AB的一个三分点坐标为( , ),
该点在椭圆C1上,∴ ,即 =1,得k=2 ,
即 =2 ,∴c= =3a,
∴离心率e= .
故选:D.
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.
【题目】为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型① 与模型;② 作为产卵数y和温度x的回归方程来建立两个变量之间的关系.
温度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数y/个 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
|
|
|
|
26 | 692 | 80 | 3.57 |
|
|
|
|
1157.54 | 0.43 | 0.32 | 0.00012 |
其中 , ,zi=lnyi , ,
附:对于一组数据(μ1 , ν1),(μ2 , ν2),…(μn , νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为: ,
(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1 , C2 , C3 , C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为 .,请根据相关指数判断哪个模型的拟合效果更好.