题目内容
(本小题满分12分) 已知二次函数满足条件,及.(1)求的解析式;(2)求在上的最大和最小值.
(1);(2),。
解析
已知函数 (1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值. (2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你会选择哪种方式领取报酬呢?
已知二次函数在处取得极值,且在点处的切线与直线平行. (1)求的解析式; (2)求函数的单调递增区间及极值;(3)求函数在的最值.
已知函数(1)当时,求函数的最大值和最小值; (2)求实数的取值范围,使在区间上是单调函数。
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
(本题满分12分)某公司生产一种电了仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量。⑴将利润表示为月产量的函数。⑵当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益―总成本=利润)
已知函数定义域为,若对于任意的,,都有,且>0时,有>0.⑴证明: 为奇函数;⑵证明: 在上为单调递增函数;⑶设=1,若<,对所有恒成立,求实数的取值范围.
已知二次函数满足条件,及.(1)求的解析式;(2)求在上的最值.