题目内容

【题目】已知△ABC的周长为 +1,且sinA+sinB= sinC
(I)求边AB的长;
(Ⅱ)若△ABC的面积为 sinC,求角C的度数.

【答案】解:(I)由题意及正弦定理,得AB+BC+AC= +1.BC+AC= AB, 两式相减,得:AB=1.
(Ⅱ)由△ABC的面积= BCACsinC= sinC,得
BCAC=
∴AC2+BC2=(AC+BC)2﹣2ACBC=2﹣ =
由余弦定理,得
所以C=60°.
【解析】(I)先由正弦定理把sinA+sinB= sinC转化成边的关系,进而根据三角形的周长两式相减即可求得AB.(2)由△ABC的面积根据面积公式求得BCAC的值,进而求得AC2+BC2 , 代入余弦定理即可求得cosC的值,进而求得C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网