题目内容

设一个正三棱锥的侧面与底面所成的角为α,相邻两个侧面所成的角为β,那么两个角α和β的三角函数间的关系是(  )
A.2cos2α+3cosβ=1B.2cosα+3cos2β=1
C.3cos2α+2cosβ=1D.3cosα+2cos2β=1
设正三棱锥S-ABC,侧面与底面所成的角为α,相邻两个侧面所成的角为β,作SD⊥BC,连接AD,作SH⊥AD,则SH⊥底面ABC,可得BE⊥SA,连接CE,则CE⊥SA,∠BEC是二侧面成角的平面角,
设AB=BC=AC=1个单位,
AD=
3
2
,HD=
3
2
3
=
3
6
,AH=
3
3

SD
HD
=cosα,SD=
3
6cosα
,SH=
3?
tanα
6

SA=
SH2+AH2
=
tan2α
12
+
1
3
=
3tan2α+12
6

又BE×SA×
1
2
=SD×AB×
1
2
=S△SAB
∴BE=
SD×AB
SA
=
3
6cosα
3tan2α+12
6
=
1
1+3cos2α

在三角形EBC中根据余弦定理,
BC2=BE2+EC2-2×BE×EC×cosβ,
1=
1
1+3cos2α
+
1
1+3cos2α
-2×
1
1+3cos2α
×cosβ,
经整理得:3cos2α+2cosβ=1,
故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网