题目内容
(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.
(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.
(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.
(I)利用线面垂直得AD^平面PAB,
∴AD^PB.根据等腰三角形得AN^PB.推出PB^平面ADMN.
(II)V=S×PN=.
∴AD^PB.根据等腰三角形得AN^PB.推出PB^平面ADMN.
(II)V=S×PN=.
试题分析:(I)∵PA^底面ABCD,ÐBAD=90°,AB∩AD=D,∴AD^平面PAB,
又PBÌ平面PAB,∴AD^PB.……3分
∵PA=AB,∴DPAB为等腰直角三角形,N为PB的中点,∴AN^PB.
∵AN∩AD=D,∴PB^平面ADMN.……6分
(II)由(Ⅰ)PB^平面ADMN,
∴PN为四棱锥P-ADMN的高,且PN=PB=.……8分
四边形ADMN为直角梯形,且MNBC,∴MN=,AN=,
∴四边形ADMN的面积为S= (2+)×=,……11分
∴四棱锥P-ADMN的体积V=S×PN=. ……12分
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。本题通过空间直角坐标系,利用向量知识可简化证明过程。把证明问题转化成向量的坐标运算,这种方法带有方向性。
练习册系列答案
相关题目