题目内容
根据我国发布的《环境空气质量指数技术规定》 (试行),共分为六级:为优,为良,为轻度污染,为中度污染,,均为重度污染,及以上为严重污染.某市2013年11月份天的的频率分布直方图如图所示:
(1)该市11月份环境空气质量优或良的共有多少天?
(2)若采用分层抽样方法从天中抽取天进行市民户外晨练人数调查,则中度污染被抽到的天数共有多少天?
(3)空气质量指数低于时市民适宜户外晨练,若市民王先生决定某天早晨进行户外晨练,则他当天适宜户外晨练的概率是多少?
⑴6;⑵3;⑶0.6.
解析试题分析:(1)由题意知样本容量为30,由频率分布直方图求出环境空气质量优或良的概率,可求得11月份环境空气质量优或良的天数;(2)求出中度污染的概率,算出11月份30天中中度污染的天数,进而可求中度污染被抽到的天数;(3)空气质量指数低于150的,在频率分布直方图中有三个小矩形,求出前三个小矩形的面积和即可.
试题解析:(1)∵11月份共30天,∴由题意知样本容量为30.
∵环境空气质量优或良的概率为(0.002+0.002)×50=0.2,
∴该市11月份环境空气质量优或良的共有0.2×30=6天.
(2)∵中度污染的概率为0.006×50=0.3,∴11月份30天中由9天是中度污染.
又每一天被抽到的概率相等,∴抽取10天,中度污染被抽到的天数共有0.3×10=3天.
(3)设“市民王先生当天适宜户外晨练”为事件A,则.
考点:1、古典概型及其概率计算公式;2、频率分布直方图;3、分层抽样.
想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:
年龄/周岁 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 91.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
| |||||||
年龄/周岁 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.5 | 173.0 |
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(2)用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别 | 频数 | 频率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | ||
合计 |
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5范围内有多少人?