题目内容
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于、两点,且,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
(1).(2)为定值.
解析试题分析:(1)由已知建立方程组,求得.
(2)设,由得
,根据,得.应用韦达定理得到
根据,,,
得到,从而有
,计算得到
试题解析:(1)由题意知,∴,即,
又,∴,
故椭圆的方程为. 4分
(2)设,由得
,
,.
7分
8分
,,,
,
12分
考点:椭圆的几何性质,直线与椭圆的位置关系,函数的单调性与最值.
练习册系列答案
相关题目