题目内容
【题目】已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.
(1)求抛物线的方程及点的坐标;
(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
【答案】(1),(1,2);(2)存在,
【解析】
(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;
(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.
(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为
抛物线的焦点坐标,
由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,
可得,解得或(舍去),
故抛物线C的方程为
又由消去y得,
因为直线与抛物线C相切,所以,解得,
此时,所以点P坐标为(1,2)
(2)设存在满足条件的实数,点,
联立,消去x得,
则,
依题意,可得,解得m<-1或,
由(1)知P(1,2),
可得,
同理可得,
所以
=,
故存在实数=满足条件.
【题目】光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能,近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
新增光伏装机量兆瓦 | 0.4 | 0.8 | 1.6 | 3.1 | 6.1 | 7.1 | 9.7 | 12.2 |
某位同学分别用两种模型:①,②进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于)
经过计算得,,,,其中,.
(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.
(2)根据(1)的判断结果及表中数据建立关于的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)
附:归直线的斜率和截距的最小二乘估计公式分别为:,.
【题目】某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,40岁以上调查了50人,不高于40岁调查了50人,所得数据制成如下列联表:
不喜欢西班牙队 | 喜欢西班牙队 | 总计 | |
40岁以上 | 50 | ||
不高于40岁 | 15 | 35 | 50 |
总计 | 100 |
已知工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为,则有超过________的把握认为年龄与西班牙队的被喜欢程度有关.
参考公式与临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩、物理成绩进行分析.下面是该生7次考试的成绩.
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;
(2)已知该生的物理成绩与数学成绩是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.
参考公式:方差公式:,其中为样本平均数.,。