题目内容
【题目】选修4-4:极坐标与参数方程
已知在平面直角坐标系xOy中,O为坐标原点,曲线C: (α为参数),在以平面直角坐标系的原点为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系,直线l:ρ.
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)曲线C上恰好存在三个不同的点到直线l的距离相等,分别求出这三个点的极坐标.
【答案】(Ⅰ)见解析;(Ⅱ)见解析.
【解析】试题分析: (1)消去参数α,即可得到曲线C的普通方程,利用极坐标与直角坐标互化求出直线l的直角坐标方程;
(2)求出圆的圆心与半径,求出三个点的坐标,然后求解极坐标.
试题解析:
(Ⅰ)曲线,
可得:
曲线C的普通方程:x2+y2=4.
直线l:ρsin=1=ρsin θ+ρcos θ,
直线l的直角坐标方程:x+y-2=0.
(Ⅱ)∵圆C的圆心(0,0)半径为2,,圆心C到直线的距离为1,
∴这三个点在平行直线l1与 l2上,如图:直线l1与 l2与l的距离为1.
l1:x+y=0,l2:x+y-4=0.
,可得
两个交点(-,1)、(,-1);
解得(1,),
这三个点的极坐标分别为:、、.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |