题目内容
19.设函数f(x)=|2x-1|,x∈R.(Ⅰ)求不等式|f(x)-2|≤5的解集;
(Ⅱ)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定义域为R,求实数m的取值范围.
分析 (Ⅰ)不等式|f(x)-2|≤5,即|2x-1|≤7,即-7≤2x-1≤7,由此求得不等式的解集.
(Ⅱ)由题意可得f(x)+f(x-1)+m≠0 恒成立,即|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|≠-$\frac{m}{2}$恒成立.根据绝对值的意义求得|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|的最小值为1,可得-$\frac{m}{2}$<1,由此求得m的范围.
解答 解:(Ⅰ)不等式|f(x)-2|≤5,即-5≤f(x)-2≤5,即-3≤f(x)≤7,即|2x-1|≤7,
即-7≤2x-1≤7,求得-3≤x≤4,故不等式的解集为{x|-3≤x≤4}.
(Ⅱ)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定义域为R,则f(x)+f(x-1)+m≠0 恒成立,
即|2x-1|+|2(x-1)-1|≠-m,即|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|≠-$\frac{m}{2}$恒成立.
根据绝对值的意义,|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|表示数轴上的x对应点到$\frac{1}{2}$、$\frac{3}{2}$对应点的距离之和,它的最小值为1,
故-$\frac{m}{2}$<1,求得m>-2.
点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于中档题.
练习册系列答案
相关题目
9.若f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,则f(2x)等于( )
A. | 2f(x) | B. | 2[f(x)+g(x)] | C. | 2g(x) | D. | 2f(x)•g(x) |
10.已知函数f(x)=$\left\{\begin{array}{l}{2+|x-2|,}&{x≥0}\\{{x}^{2}}&{x<0}\end{array}\right.$,当函数g(x)=k-f(x)有三个零点时,实数k的取值范围是( )
A. | <k<2 | B. | k≥2 | C. | 2<k≤4 | D. | 2≤k≤4 |
7.幂函数f(x)=k•xα的图象过点$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,则k+α=( )
A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
14.已知a,b∈R+,函数f(x)=alog2x+b的图象经过点(4,1),则$\frac{1}{a}$+$\frac{2}{b}$的最小值为( )
A. | 6-2$\sqrt{2}$ | B. | 6 | C. | 4+2$\sqrt{2}$ | D. | 8 |