题目内容
【题目】如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.
(1)求证:四边形ACC1A1为矩形;
(2)求二面角E-B1C-A1的平面角的余弦值.
【答案】(1)见解析(2)
【解析】
(1)通过勾股定理得出,又,进而可得平面,则可得到,问题得证;
(2)如图,以为原点,,,所在直线分别为轴,轴,轴,求出平面的法向量和平面的法向量,利用空间向量的夹角公式可得答案.
(1)因为平面,所以,
又因为,,,所以,
因此,所以,
因此平面,所以,
从而,又四边形为平行四边形,
则四边形为矩形;
(2)如图,以为原点,,,所在直线分别为轴,轴,轴,所以,
平面的法向量,设平面的法向量,
由,
由,
令,即,
所以,,
所以,所求二面角的余弦值是.
练习册系列答案
相关题目
【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:
并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:
愿意购买该款手机 | 不愿意购买该款手机 | 总计 | |
40岁以下 | 600 | ||
40岁以上 | 800 | 1000 | |
总计 | 1200 |
(1)根据图中的数据,试估计该款手机的平均使用时间;
(2)请将表格中的数据补充完整,并根据表中数据,判断是否有99.9%的把握认为“愿意购买该款手机”与“市民的年龄”有关.
参考公式:,其中.
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |